维度经济网
您的当前位置:首页 > 企业管理 > 钕铁硼材料仓储管理方法

钕铁硼材料仓储管理方法

时间:2023-07-31 09:11:44来源:网络作者:维度经济网

钕铁硼磁性材料如何保存

楼主朋友担心的,主要是一个退磁的问题,是吧,钕铁硼磁铁在进行了充磁之后,影响其退磁的,主要就是温度。朋友也知道,钕铁硼磁铁根据耐高温的要求不同,有6个级别,分别是耐高温80度、100度、120度、150度、180度和200度。只要磁铁的工作环境温度控制在所用稀土强磁材料的耐温值要求范围内,磁铁的退磁是可以忽略不计的,因为真的是微乎其微。 而楼上有朋友提到,潮湿的问题,是考虑到钕铁硼磁铁本身不具备一定的防锈功能,一般表面需要做防锈处理,现在用得较多的方式是电镀,如镀锌、镀镍等,也有做环氧树脂、电泳、真空镀钛等,这些都是为了更好地防锈。在保存钕铁硼磁铁时,对环境的要求就是干燥,还有就是不让其遇到酸

烧结钕铁硼的质量好控制吗?

【烧结钕铁硼的质量控制】烧结钕铁硼永磁材料是用粉末冶金方法制造的,其工艺流程如下:原材料处理→配料→熔炼→制粉→磁场取向与压型→烧结致密→回火时效→机加工与表面处理→检测。从工艺流程可以看出其整个的工艺过程是一个系统工程,特别是高性能的钕铁硼永磁材料,其生产过程的每一个工艺环节都对产品的性能具有“决定权”与“否定权”。为了生产出高性能的钕铁硼永磁材料,企业的组织与管理者应重视生产过程的每一个环节,引导员工注重过程中的每一个细节。只有这样,才能做好烧结钕铁硼的质量控制。烧结钕铁硼质量的保障来自原料及生产过程的控制: 1、根据企业制造高档或中档或低档烧结钕铁硼的要求,按照国家标准规定的原材料成分来

钕铁硼磷化封闭工艺有哪些?

你好,我们现在就在做钕铁硼的磷化和封闭(钝化)处理的,有科研项目“钕铁硼磁性材料的表面防腐蚀技术”。虽然项目还没有结束,但是已经有磷化液供应市场了。 我们采用锌系磷化处理,温度50-55度,磷化膜浅灰色,均匀致密,盐水浸泡(3%的盐水)2.5小时以上。至于封闭或钝化,由于国内尚没有成熟的处理工艺,我们正在研究,可以肯定的是,我们将采用封闭技术进行磷化后处理,预计封闭后盐水浸泡时间将达到4小时以上。 我们单位在北京,如果有兴趣的话,请告诉我你的邮箱等信息。

钕铁硼材料怎样防腐蚀?

钕铁疆永磁材料自80年代阿世以来.因其具有优异的磁性能,相对低廉的价格和充足的资源储备而迅速取代传统的Sm -Cc 系稀土永磁材料,在音雷电机、磁共振成像、电机、传感器、仪表等领域获得了广泛的应用。但是,NdFeB磁体存在着耐蚀性能差的缺点.严重影响了其应用。本文综述了近几年来有关烧结和粘结钕铁硼永磁材料氧化腐蚀机理和防腐蚀涂层的主要研究报告向钕铁硼磁体中掭加微量元素可以改磁体的耐腐蚀性能,山本[5)等指出在烧结钕铁硼材料内加人Zr.V、Nb.Ta.Mo.W、.Al 的一至二种(不超过2%原子比)取代Fe,可改善磁体的耐蚀性。飞世和五十岚[6]亦认为在烧结磁体内加入Nb、Ta、V、Ti、Al的一或二种使之在晶界上偏析,臧少晶界上富稀土相而提高晶界的耐氧化腐蚀性能。SteyaertS.等[7用穆斯堡仪跟踪了Al.Co、V,Nb.Mo 添加元素在磁体中的氧化腐蚀行为.认为V在晶界形成(VI xFe,)3B2 沉淀相并夹杂有Fe- VEDS检测结果表明,在晶界中没有发现含B 的硼化物(boride)相,而只有富钕相,此富钕相的成分分析显示主要是(Nd.Dy)isCo2Cu.这种非磁性相的形成,既没有影响到磁体的矫顽力.又没有影响到母相,同时又增加了晶界的耐腐蚀性能。B.Grieb[9]的研究表明.在30%稀土含量钕铁硼磁体中添加一定量的Dy.Co、Al.Ga.Nb 和CU 可以获得耐腐蚀的高温度稳定性材料: 其剩磁温度系心数和矫顽力温度系数分别达到-0.08%/K 和一0.5%/K,使磁体的温度使用范围达到120- 190C,它的耐腐蚀性能可与Sm2(TM)17相媲美(图3)。它的微结构显示.在晶界形成了稳定的金属间化合物,它们包围着主相,并且相当光滑,而晶界没有发NdgCoNdCu 和Nd]+eFeB4 相化合物,富钕相的含量也很少,这种大量稳定金属间化合物的存在是其耐蚀性能提高的主要原因。

钕铁硼表面处理的方式:

钕铁硼表面容易出现锈蚀,比如:钕铁硼永磁材料居里温度点低,温度特性差,化学活性强,硬而脆、易被粉化、氧化腐蚀;钕铁硼烧结永磁体表面在磨削加工时产生的恶化层和密度化不完全而产生的空孔、氧化相等;
钕铁硼表面采取适当且适合的表面处理,NdFeB是多相结构,不同相的电位差大,致使磁体本身成为电位电池,酸性环境则加速其锈蚀; 对钕铁硼表面进行钝化处理,钝九游艺简单,好控制,其表面形成致密钝化膜后能加强抗腐蚀能力;
表面电镀处理步骤:除油脱脂→水洗→5%硝酸酸洗→超声波水洗→水洗→水洗→MJ670钝化→水洗→水洗→电镀锌镍、电泳。经可靠性验证,该工艺镀锌,盐雾可达140小时以上。
表面钝化处理步骤:除油脱脂→水洗→5%硝酸酸洗→超声波水洗→水洗→水洗MJ685活化→水洗→水洗→MJ670钝化→水洗→水洗→吹干烤干。经可靠性验证,该工艺处理的钕铁硼表面色泽为均匀银白色,不掉灰,盐水星空2小时以上。 钕铁硼HD氢化粉碎法只适用于能氢化的金属或合金的粗破碎和中磨,进料尺寸100—0.1MM,出粉粒度:10-1000UM,对于储氢合金Ni-HM电池负极材料所需粉末,此粒度已满足实用要求。钕铁硼永磁体的粉末粒度应为3-5UM,须气流磨细磨处理。氢化破碎(HD)法是吸氢晶格膨胀及脱氢还原细化粒径,且吸氢或脱氢是可逆的化学反应过程,物理化学反应存在其化学成分及磁性的改变。
NdFeB吸氢,生成的氢化物晶格膨胀,并生成热,化学过程;胀的内应力使NdFeB晶体产生裂纹变成疏松体为物理现象,两都同时进行;加温脱氢处理,大部分主相氢化物变回原来的Nd2Fe14B粉体,部份残留富Nd相氢化物需深度处理。NdFeB的吸氢过程,最先吸氢的是露在表面的富Nd相,其次是主相Nd2Fe14B与H2发生反应,主相氢化物的形成伴随着放热反应,总的热量可以使反应物温度升高到300度。晶格常数变大和热膨胀过程产生粉态炸裂,钕铁硼的HD粉末已经发生质变。
脱氢使Nd2Fe14Bhy变成Nd2Fe14B,即将氢化物分解。温度与压力的影响,650。C时,富Nd相变软熔化,继续升温发生HDDE反应,现在采用最佳脱氢温度是500。C,在此条件下,主相氢化物的氢全部放出,富钕相氢化物NdH3在500。C之后,脱了部份氢变成NdH2 , 1040。C可将氢从主相Nd2Fe14B完全排出。 1, HD+JM(气流磨)的制粉效率提高2-3倍,达到90-100KG/HR(原来仅30KG/HR);接近NDFEB主相成分(RE=11.76at%)就力学性能而论,又硬又韧(Hv=530,抗弯强度24-26KG/mm2);
2, 有效降低磁粉的氧含量,HD氢化粉碎法有效地降低了磨粉工段的氧化程度((200-800)×10-O2 ),在烧结过程中有氢存在,可以还原钕的氧化物,净化晶界促进致密化,实现了部分的活化烧结。
3, HD粉多沿晶界相开裂:HD+JM粉末多呈单晶粒子,接近最佳粒子尺寸2-3UM,晶粒边沿均有富钕相,有效地提高IHC,实际上可以提高500-5000Oe.
4, HD磁粉性能略有变异:HD+JM粉末由于部分粉末以氧化物形态存在(Nd2Fe14BHxNdHy),其磁性变异呈现:4πJs高,Br和IHC低的现象,磁性弱,脱模容易,外观整齐,堆放方便;
5, HD粉末具有良好的抗氧化性:HD+JM粉末具有较好的抗氧化性,保存时间较长,实践表明≥4UM的粉末在空气中不易燃烧;
6, HD氧化粉碎法的负面作用和效果:
(1)HD氢九游艺的安全问题,在九游,冶金生产领域中一些场合要使用氢气,氢气能自燃,能爆炸,
因此相关工艺设备必须考虑消除产生爆炸的条件,如氢与氧混合达一定浓度并有明火才爆炸。另外需防止氢脆,储氢窗口和管道的材料必须是抗氢材料(与氢发发生化学反应的材料)组成,例如不锈钢1Cr18NI9Ti就是很好的抗氢材料。
(2)超细粉太多的问题,HD+JM粉末容易磨细,需要改进气流粉碎机使能产生全部有用的粉末。
(3)HD+HM粉末表面楞角很多,在磁场取向和盛开过程中摩擦系数增大,使取向度降低导致Br降低,剩余磁感应强度Br降低;与同成分NDFEB合金机械制粉相比,HD+HM粉末减少了氧化,相对而言Nd(R)成分比同等的合金要高,非磁性相的增加也导致Br的降低;
(4)烧结中脱氢和晶粒反常增大(AGG),HD+JM粉末中含氢量不同,最终在烧结过程中才能脱尽。在升温过程中还会出现开裂,真空度不高而出现氧化,氮化等现象,原因在于混料烧结,设备不适应,升温不正确所至。HD+JM粉末中含氢而且粉末细(~3μm)在一般制度下很容易发生晶粒超常增大的问题(矫顽力HC大幅度降低),解决方法:降低烧结温度由1060度降到960度,添加晶粒抵制剂。
(5)如果采用HD+JM粉末制作磁体与相同成分机械粉末磁体相比较,结果Br,Hk/Hci都化用机械制粉的磁体低。原因在于Pr-Fe-B合金的氢化物PrFeBHx的易磁化轴由C轴变成A面,在磁取向时发生错位,当完成烧结后,易磁化轴由A面变成C轴了,这就出现Br,Hk/Hci都低的,只要不含Pr的Nd-Fe-B磁体都不会出现这种现象。
氢破碎(HD)设备:高性能磁体的制备首要是保证低氧工艺,正是低氧环境的需求促进了氢化制粉的早日实用化,HD技术正是保证无氧制粉的核心技术。
流化床气流磨粉机:高性能磁体(50MGOe)的出现对制粉组织的平均晶粒度在4.6~5.0um的范围,将晶粒微细而均匀化的要求前移到制粉阶段,则磁粉平均粒度应在3~5um,粒度分布曲线应很集中,尖锐,传统工艺磁粉的频度分布曲张,正好与新工艺磁粉相背离呈显分散,宽钝,最大的粒子达40um.这里提到的新工艺磁粉,制造时应用了SC+HD+JM组合技术。长期来检测磁粉的标准是平均粒径(FSSS),而没有采用磁粉的频度分布曲线。平均粒度应在3um,最大约7um左右。而我国流的流化床气流磨粉机难于达到此要求。 流化床对撞式气流粉碎机,闭环气流磨粉要贩优点:
(1)能耗低,由于多喷射咀对点喷射气流九游大,分组轮使合格细粉及时排走,不合格粉末被返回粉碎腔内进行二次粉碎,喷射动能得到最佳利用,比圆盘气流粉碎机能耗减少30-40%;
(2)磨损与沾粘小,由于喷射气流物料分路进入认室,从而避免了粒子途中产生的撞击,摩擦及沾粘沉积,也避免了对喷咀和管道的磨损。
(3)分级机能独立地调整,粒度分布比较集中。
(4)自动化操作,结构紧凑,磨损小,拆洗比较方便。
(5)闭环式能防氧化和污染。
闭环气流磨粉机的缺点:
(1)在粉碎腔内,若原料颗粒太,密度太大不能呈现流化态时则无法粉碎;
(2)分组机叶片磨损严重;
对撞式气流粉碎机存在几个问题:(1)尾粉(回吐料)问题,(在粉碎单一品种,单一成分物料,长期连续生产时不存在尾粉的问题,钕铁硼永磁体生产总是涉及不同成分,不同批料,不允许相互混杂,如100KG原料进入磨粉机,出粉88KG,还有12KG滞留机内,这12KG粉料就是尾粉,只有继续加入原料才能把这些尾粉12KG引导出来。尾粉的产生是由于原料颗粒太大,密度太大不能呈现流化态时则无法粉碎。但也可能是相反的原因,原料状小,但在于分级轮的要求,密度太小不能呈现正常流化态时则粉碎效率很低,无法出粉。尾粉被憋在粉碎机的粉碎室内空打转,出不来,此即尾粉的成因)。
(2)尾粉是大颗粒出现的原因,导出尾粉的唯一方式,即停止分级轮的转动,
让粉碎室的摒弃将尾粉吹出,从旋风集粉器收集的尾粉粒度不同,批量不大,不好处理,是有存放待以后集中处理。尾粉收集并不完全,其中许多大颗粒会阻留在所经过的管道中,待到下一次磨粉机运行时,新的强大粉流可能把以前阻留在管道中的大颗粒尾粉卷入到旋风集粉器中,新粉料中混入了大颗粒,这就是大颗粒的污染问题。
(3)超细粉没有被回收,流化床对撞式所流粉碎机设有二个出料口,旋风集粉器是粉料出口,过滤器下面是超细粉的出口,对于钕铁硼永磁体生产来说此种安排极不合适,因为需要用全部粉末,而不是舍弃细粉。已经有了高级轮式分级机,再设一个旋风分离口碑马超细粉分离出来,实无必要,超细粉很难收集,实际上超细粉已经变成限氧化的废粉。
(4)闭环系统设计问题,钕铁硼永磁体低氧生产线上防氧化是重要问题,磨粉氮气在系统中闭路循环,
然而进料口和出料口并不是全密封设计,透进入的氧气靠大量的氮气来稀释,既慢而且不经济;
(5)正常出粉困难,在旋风分离器下方直到出口设计不合理,产生粉末堵塞,沾挂,滞留等现象,由于出粉困难,操作工人不得不用铁器敲打管道,靠震动出料,
(6)测氧仪(氧化锆探头)早期用的氧化锆探头,遇氢气,甲烷等则失效,其读数为0。
对撞式气流粉碎机改进指标实现磁粉的低氧化,微细化和均匀化,如
(1)系统全密封,用统一口径的原料罐和出料罐与机器密封对接,用真空系统排除机器中的空气,再用高纯氮冲洗,保证机器工作工氧化。
(2)取消旋风分离器,由一个大的捕集器收集全粒径粉末。
(3)改道回收尾粉,在粉碎室下方安装一个蝶阀和粉罐,卸装的尾粉再用圆盘气流粉碎机进行磨粉,尾粉再加入原批号实现全部回收。(4)出粉方便,由于使用了夹阀,气动敲击锤和最佳锥角等,消除了出粉时堵塞,沾滞现象。

网站名标签: 钕铁硼物理学理工学科机械机械加工 上一篇:企业标准可以做为技术参数吗 下一篇: 返回列表

相关推荐相关推荐

最新排行

热门更新

回到顶部